数学月間の会

MAM1999

数学強調月間 ( MAM )――4月, 1999

   「 Mathematics and Biology/ 数学と生物学 」

1999年4月,MAMの準備のために,数学連合政策会議( JPBM )はテキサス・インスツルメント社がこの年の行事「数学と生物学」に関する公式スポンサ−として名乗り出た事を公表したい.

MAMは,数学の重要性や多様性,日常生活との関連などの促進機会を数理科学業界に用意する.テキサス・インスツルメント社とJPBMは,数学の価値を諸君の同僚,生徒や社会に通知するためのMAMウエブサイトに掲載した,役立つMAM,1999年の材料と資源の0000をお薦めする.MAMウエブサイトのアドレスはhttp://mathforum.org/mam.である.

1999年のMAMテ−マは「数学と生物学」である.数学は医学,人間遺伝子,伝染病学や研究解析等さまざまな分野の本質的な要素である.生物学における数学の表現として同封した1999年MAMのポスタ−は正常な心臓の電気的活動を,それがあたかも一点が刺激されて広がる様に描写している.色は電気的信号が心臓を伝播して到達する時間を目だたせるのに使われている.長方形の領域は心室の壁の大きな板を表している.又すべての領域は解剖学的デ−タ−からとられた幾何学と繊維方位を使っている.数学なしでは,この3次元概念を見る他の方法はない.心臓研究に関する数学のもっと詳細な記事はMAMウエブサイト ( http://mathforum.org/mam/99/essay1.html )を見て下さい.

MAMはそれぞれ各位の生活と関連する数学について新しい方々と交信する素晴らしい機会を提供する.
        *     *     *     *     *
「テ−マ・エッセイ」
◇ 心臓における数学  Dr.James Paul Keener  ユタ大学
◇ 数学とDNA     Dr.De Witt Sumners  フロリダ州立大学
◇ 数学と社会生態学  Dr.Louis J.Gross   テネシ−大学
◇ 生物学がいかに数学に影響するか
            Dr.Louis J.Gross   テネシ−大学

Tani/Katase
0

MAM2000

Mathematics Awareness Month ( MAM )――April,2000

     「 Mathematics Span All Dimensions/ 数学は全次元に 」

次元たどりの象徴図柄――MAM2000の電子ポスタ−にある「山羊の角」は,0次元空間から多次元空間への道標である.各分野に貢献した11名の業績を紹介する.山羊の角の先端(0 次元空間)から,1次元の地層コアサンプルやレ−シングカー地形(R.Tapia),E. A. Abbottの“平面国”やG.Pixerのアニメーションスタジオの2次元世界へ,バレ−振り付け,結晶幾何学(M.Senchal)の3次元から,重力レンズ(A.Petlers)の4次元,より高次元の宇宙論,超空間,Madeleine L'Engleの小説”時間のひだ”へと導かれる.

数学的な点,線,面,空間,高次元――
海上で,或いは顕微鏡試片に位置を定めるのは繊細な仕事である.位置は一つの直線上や一つの曲線上であれば,1数字で記述できる.1点が定まれば他の点はそれからの距離で特定できる.地図上の位置は2つの数字 緯度と経度を必要とする.地球表面からの高度或いは深度があれば3座標,緯度,経度と高度(正数)又は深度(負数)となる.調査や試料採取には位置決めがついてまわり,3つ,4つ或いはそれ以上の数字を必要とする.数学者がパタ−ンを求める時,コンピュ−タが大きな役割を演じる.2乃至3個の変数をもつ位置の集合をコンピュ−タ画面上に表示でき,これらを動かして見ると,位置デ−タの原簿では明らかでなかったパタ−ンが見えてくる.デ−タのこの様な処理は,探索的データ解析と呼ばれJ.Tukeyがその先駆者である.点とはその位置を示す特性に過ず,長さ,幅,高さ,厚み,容積を持たない.数学ではこれを0次元と呼ぶ.
線分は1次元の対象で,両端末が定まれば,線分上の各点を一つの記号で特定できる.1つの端末点を0,他端末点を1として,中間点は1/2と特定する.線分が絡まりあるいは平面と係わると記号は増えるが線分は1次元のままだ.1次元空間の好例は地質学者が採取する地中標本で,深く掘り下げて,各深度の地質を調べることができる.勿論 試掘点の緯度・経度を記録する二つの記号は必要である.この分野では,古代生態学のT.Webbが貢献している.円周は1次元で起点から0〜360でどの位置も現せる.
水平・垂直で構成される直方形は2次元空間の例で,直方形のどの位置も二つの記号で表現でき,基点を左下隅から右上隅に変えても,二つの記号である事は変わらない.複数の直方形の中から一つを選ぶ場合は,二つ以上の記号を要する.平面座標に並べられた直方形は2次元物の4次元集合となる.直方形の1点を軸に回転させると,もう一つの次元・回転角を加え,この種の回転は2次元コンピュ−タ画面にアニメ−ション等の応用をもたらす.
2次元物を平面上で回転させたと同じように,3次元物を空間で自在に回転させると3Dコンピュ−タ画像上に素晴らしいアニメ−ションを実現する.19世紀以来,時間が3次元空間に付加されて,4次元を構成すると考えられ,20世紀物理学で発展してきた.何処(3次元)で何時(1次元)と催し物を明示するのは,数学では4次元(abct)となる.時間以外にも4次元があり,これをどの様に表現するかが問題で現代物理学では10〜26次元の展開をしている.超紐理論のM.Kaku,宇宙学のJ.Weeks,M.L'Engleの“時間のひだ”は5次元世界の出来事を述べる小説,バレ−の振り付け師J.Strandbergやアニメ−タE.Catmull, T.DeRoseも多次元世界を駆使している.アニメやビデオ・ゲ−ム制作にも数学が必要となる.Tani/Katase
0

MAM2001

Mathematics Awareness Month ( MAM )――April, 2001

「 Mathematics and the Ocean/ 数学と海洋 」  Barry A.Cipra and Katherine Socha

? 惑星の海洋―――地球の最も驚くべき事実はそれが水をかぶっている事である.我々の惑星の表面を支配し,遥か内陸に住んでいたとしても人々の生活に影響する地球の海洋――地球を巡り大西洋・太平洋や多くの小さい海を含む水の巨大な広がり――は,永らく驚きと恐れの源であった.有史の初期以来,人類男女は海洋とその中における生活の挙動を理解する様に努めて来た.海洋の知識は完全からは遠いが着実に進歩している.その多くの部分は数学の新しい発達に負っている.
科学的な接近は数学的解析の必要性をもたらした.今日 海洋学は基本的な海洋過程を表現する数学の方程式を使い,それらの意味を理解する数学的な理論を必要とする.研究者は音波ブイ,船舶計器や衛星からの多くの錯綜したデ−タ−を組み立てる統計学とその過程を利用する.偏微分方程式が,岩の海や航行する船の表面波から地球の周りを流れる深い海流に対してまでの流体運動の力学を記述する.数値解析により,これらの方程式の精度の高い解が得られるようになり;動的なシステム理論と統計学が付加的な洞察を導いた.今日の海洋学者はガリレオやニュ−トンの最高の伝統を継いで正に数学者である.数学は近代海洋学にぴったりの言葉であると諸君は思うだろう.
? 数学で何をやるか?―――もっとも基本的なのは,いかなる海洋過程もすべて変化することである.計測値は時間と共に変化する.(例えば潮流は1日2回の干満で海岸が動く)或いは場所から場所へ変わる(例えば潜水艦が海に深く潜った時の圧力).しかし温度や塩分の様な多くの数値は場所と時間の両方で変化する.変化する過程の表現に即応的な数学の領域は微積分と微分方程式である.特に偏微分方程式(略してPDE)は,時間と空間で連続的に変化する量を表現する.海洋学のすべての分野はこれらの問題に重く係わっている.
? 物理海洋学の観点―――物理海洋学は,惑星規模の循環と気象,沿岸海洋学,赤道海洋学,内面波動と乱流,表面波,大気−海の相互作用等を含む多くの学問分野を持っている.これらの分野で研究される現象が,複雑な形で相互作用しているのだが,多くの海洋学者は一つだけを見ている.これらすべての分野の包括的な評価は,海洋百科事典の大変多くの内容に満ちている.ここでは近代物理海洋学の特性がわかるいくつかの例を示す.
−−惑星規模の循環と気象
−−内面波動と乱流
−−渦
? 流体の将来――今日 海洋学者や応用数学者になるにあたり,最も興奮することの一つは,技術的・理論的進歩が非常に速いことである.目覚ましい技術的改良は,初期の海洋学では想像もできなかった大量デ−タの収集と解析を可能にした.10年前に比較して,今や巨大で上質な計算力が利用でき,大規模海洋モデルの高分解能の数値解が得られるようになった.それらは,実際の海洋デ−タの財産と比べられる理論的な結果を,初めて導き出すのに十分である.将来の数値解析は,局地的海洋モデルの正確な予報ができるような高分解能なものに進歩するだろう.
? 海洋を夢みる―――海洋はいろいろな感懐を呼び起こしてきた.海の美しさは我々の想像的美術,音楽,詩や科学を描き上げ世紀を通して人間の意識に共鳴して来た.疑いなく人類は海の精の歌に魅惑され――数学を含む――すべての有用な資源を使い海洋と共に生き それを理解し その魅力に惹かれ続けるであろう.Tani/Katase
0

SGK通信(8)

SGK懇談会へぜひおいでください:
「数学月間について話し合いましょう」


数学月間の開始日 7/22(土),11:30-2:00,
シーボニア(星陵会館4F,日比谷高校内)にて開催します.
会費:¥3000円(立食形式)
1

SGK通信(7)

社会や企業で数学を求める声が大きくなるのとは裏腹に、この数年、科学研究費全体の中で、数学の占める割合は小さくなっている。目に見える成果を求めて重点的に投資するやり方に、地味な数学ははじき飛ばされてしまった。この間に米国やドイツは数学の研究予算を増やして強化を図っている。数学の理論は、何十年もたってから応用の道が開ける場合も多い。木の幹にあたる基礎的な研究をしっかりと育てる必要がある。同時に、さまざまな応用分野へ枝を伸ばす数学者を育てることも大切だ。数学者はこれまで自分の専門に閉じこもりがちだった。生物学や工学などの他の分野に目を向け、積極的に進出した方がいい。それが数学そのものを鍛えることにもなる。数学者があちこちで活躍できることも見せてもらいたい。数学の力や魅力が社会に伝われば、算数を好きになる子供たちも増えるだろう。それは長い目で見れば、数学のすそ野を大きく広げ、人材を厚くすることにつながる。
http://www.asahi.com/paper/editorial20060613.html#syasetu2
(朝日新聞6月13日社説より)
0

SGK通信(6)

SGK通信


MAM/MAW資料公開のご挨拶
米国MAMの各年度の広報の紹介を順次SKG通信に載せていきます.
これらは,片瀬氏が収集翻訳してありましたが,今回,公開にあたり谷がレビューを行いました(誤訳等あれば,谷の責任です).可能な限り,ウエブサイトの原文をチェックしましたが,すでに見当たらないものもあります.また,種々の科学領域や数学分野の話題が扱われており,私だけでは力不足で,まだ不完全です.ぜひSGKにご協力お願いいたします.翻訳の誤解等お気づきになりましたら,掲示板等を利用しお知らせください.みんなで議論する良い場になると思います.

各年度のMAM翻訳中には,簡略し情報源ウエブサイトをいちいち記載しませんでしたが,ご利用される場合は,著作権にご注意ください.

−−−−−−−−−−
以下の順で掲載いたします.
2006年
1991年
1992年
1993年
1994年
1995年
.....
0

mam2006

数学強調月間 ( MAM )――4月,2006

「 Mathematics and Internet Security / 数学とインタ−ネット保全 」

 米国の数学会,統計学協会,数学協会,工業応用数学会は2006年MAMのテ−マを「 数学とインタ−ネット保全 」とする.
諸君が銀行口座に記入したり,支払ったり,アマゾンから本を買ったり,ネットで売り買いするのにパソコンを使う時,公認されない第三者には読まれない社会的に守られている諸君の番号,銀行口座の暗証番号,クレジットカ−ド番号等,諸君の個人証明が前提になる.それを可能にするのは数学である.

実際,今日のインタ−ネット取引では比較的近年まで実社会には使われなかった純粋数学の分野「 数論 」の結果を用いた暗号化技術を重く利用していることは驚愕に値する.
「 数学者の謝罪 」と云う本で,英国の著名な数論学者 G.H.Hardyが,本当の数学者フェルマ−,オイラ−,ガウス,ア−ベル,リ−マンによる本物の数学は殆ど完全には使えないが,今日のインタ−ネット取引の安全を守っているのは彼自身と共に,まさしくこれら同じ数学者達によって開発された数学であると宣言した.
世界の主要な保全専門家の一人で,応用暗号法と云う有力な本の著者Bruce Schneierによれば,暗号による安全は人や機械ではなく数学から得られるものである.数学的保全は弱者強者を問わず誰にでも有用で,普通の人々のプライバシ−を守る非常に威力のある道具を提供する.それが暗号による安全の理想である.
しかし数論に基礎づけられた暗号化は,インタ−ネットの安全に数学が重要な役割を演じているだけではない.ウェブサイトでいくつかのエッセイが他の事例を述べている.歴史の流れを見て,我々は来たるべき年々の事を更に予想する事が出来る.

テ−マ・エッセイ
数学は,コンピュ−タ技術の開発に,本当の最初から関与してきた.算数計算する機械装置を設計製作したCharles Babbage達,George Booleの論理構造の代数的取り扱い,Alan Turingの離散計算の概念化,Turing,John von Neumanその他数学者達による最初の電子計算機 等々,コンピュ−タはそもそも数学的な計算をする為に考案され作られた.
技術の応用に関する重要性はまだ多数残されているが,今日多くの人々がこれについて如何に考えるかではなく,彼等が主として何の為に使うかではなかろうか.
1960年の後半にデ−タ−を交換するためにコンピュ−タを連結する早期の試みが,予想以上に速く想像を絶する広がりでインタ−ネットに繋がり,その後すぐ世界的 ウェブサイトの確立となった時,コンピュ−タ−は家庭,ビジネス,商業,企業,通信等の為に毎日の生活の一部となった.
大学の研究者がデ−タ−や論文を速く容易に交換する為に,最初につくられたネットワ−クが,本質的に外界に開放的で世界的公共の交信ネットワ−クに進展し,プライバシ−や安全が急に重要な要素となってきた.数学が再びコンピュ−タ−技術に中心的役割を見出して,この際,プライバシ−での交信,ビジネスの実行,安全な金融取引に,それを通じて安全なインタ−ネットを保証する方法を用意するよう援助している.

◇ 公開鍵の暗号法( Public Key Cryptography )
今までに一番よく知られている応用は,1976年スタンフォ−ド大学のWhitfield DiffieとMartin Hellmanで,特に数論の応用で最も広く使われている Public Key Cryptographic System, RSAがある.  その後 Jim Sauerberg ( Saint Mary's College of California,教科書:暗号法入門 ),Burt Kaliski ( RSA Laboratories ),Dan Bonah ( Stanford大学 )等が論文( 1999,AMS ),エッセイや教科書を出している.

◇ インタ−ネット投票と安全計算( Internet Voting and Secure Computation )
Joe Killan,1980,Rutgers大学:暗号の理論と応用,アルゴリズム,Complexity理論
Vincent Rijmen,オ−ストリア・Graz技術大学:コンピュ−タ−の安全性,アルゴリズム Rijndael開発,その後 U.S.National Institute for Standards and Technology(NIST)
で採用され高度暗号標準( AES )になった.

◇ コンピュ−タ−・ビ−ルスとワーム( Computer Viruses and Worms )
ビ−ルスとワームは我々の次なる課題である.インタ−ネットにまつわる問題で時に数
100万ドルのロスに繋がるかも知れない. Zesheng Chen,Chuanyi Jiはビ−ルスの様な生物学的動因の分散を研究する為に開発された数学が,ネットを通じて伝搬するコンピュ−タ−の変化を調査するのに成功裡に応用され得ることを示した. Zesheng Chenはインタ−ネットワームの専門家,電気・コンピュ−タ−技術学校:Georgia Institute of Technology. Chuanyi Jiは同じ学校の同僚でネットワ−ク処理と安全性の研究者.

◇ デ−タ−の安全保管( Secure Data Storage )
Dalit Naor( IBM Haifa Research Lab. )は諸君自身のパソコンだけでなく,インタ−ネットで離れた場所に保管するデ−タ−も安全に保持する為に必要なものは何かを説明した. 1996年以来,彼女はインタ−ネットの内容保護・保管システムの安全技術を研究している.

 注 )  追加エッセイが数学月間MAM迄の数週間にウェブサイトに加えられる
    かも知れない.
0

mam1991

数学強調週間 ( MAW )――4月21〜27日, 1991年

 「 Mathematics:It's Fundamental/数学:それは基本である 」

我々は読んだり書いたり,効果的に意志疎通ができる読み書き能力が重要である事を知っている.職場において読み書き能力がいかに重要であるかは,我々にとって既に明らかである.計算する能力がある事は,これ又同様に重要である.この社会において数を扱う才覚がある事が教育を受けた人にとって枢要だとは見られていないかも知れないが.
事実,これと正反対の場合が往々にしてあり,こらは残念ながら本当である.多くの米国人は数学を扱うのが不得手な事を心情的にとはいえ許容し得るものと見なしている.更に悪い事に我々は数理に強い事が重要ではなく,むしろ浪費的没入であり退屈な技能に過ぎないとする思潮の中で,このような国家的問題点を単純な算数の問題と勘違いしてごっちゃにしている.
数学が科学技術の言葉であるという事から目をそらせたいという我々国民の意向は,今や悲惨な結果をもたらしつつある.二三の例を引いてみよう.8学年次の数学能力達成度の国際比較において,最近の米国の学生は20ヶ国中の14位にランクされた.現在数学を学びつつある4百万人強の10学年次学生の内,僅か約8分の1或いは50万人だけが高校を卒業する時点で,何らかの数学に関係ある職業に従事する事に関心を持っているという.昨年度に米国の高等教育機関から,数学の博士号を受けた人のうち米国市民は半数以下であった.その数値は 43%で かってない最低記録であった.更に米国市民が受けた数学博士号のうち女子は22%に過ぎなかった.
 理数的能力について我々が子供や,学生,同僚教職者に伝えているやり方は,我々の国家的文化の一部である.もしその文化が数学的な興味や才覚,抽象的な考え方を反映するものであるなら,そこで始めて我々は社会における科学技術的読み書き能力を鼓舞する事になるであろう.
4月の最終週は数学強調週間である.この期間中,数学者達は数学の価値を宣揚するため全国的に種々の活動に参加する.レ−ガン大統領は1986年に公式宣誓書に署名して数学強調週間を宣布した.
 この週には全国の学校の教室で,数学者達が若い女性や未成年期の学生に数学を推奨するための特別な活動に参加する.大学の構内においては,より多くの数学専攻生を学部へ勧誘するための特別行事もある.そして各州においては知事,市長その他公選役職者が式典を称え宣言書に署名する.
PTA全国組織は昨年 米国人学生が数学から逃避しようとする様々な恐怖症に対処して,対策を考えたり話し合うため地方のグル−プを支援し,数学に関する素材資料集を全国6万のPTAに配布した.70個の簡単な活動事例集“数学の本質:子供達はあなたを頼りにしている”が多数の要望があってスペイン語で出版された.
子供達は我々を頼りにしている.我々は米国の子供達が他の国の子供達と同等の能力を持っていると思っている.彼等は一般的に数学が良く出来ないが,それは彼等が数学教程を充分に受けていないためであり 又その教科が充分に早く進まないからである.しかしながら数学を親近化するための計画は驚く程の成功を収め 更に拡がりを呼んでいる.
数学強調週間中は 科学や技術や管理業務の職業にあって,その基礎としての数理的な能力の重要性を強調するために一緒に活動しようではないか.ブッシュ大統領は最近我々に向かって来る2000年迄に科学と数学において卓越出来るよう重ねて要請した.1991年はこのゴ−ルに向けて活動を始める意義ある年であり,我々は次の世紀の科学世界や職場に向け更なる準備をすべきである.
0

mam1992

数学強調週間 ( MAW )――4月26日〜5月2日, 1992年

「MATHEMATICS & THE ENVIRONMENT/ 数学と環境」

我々は,日常の経験から波の多様性を知っている.電磁波は,テレビやラジオ放送を家庭に届け,超音波は,母の子宮の赤ちゃんの成長をモニターするのに使われる.川面,湖水,海洋には,沿岸の環境に影響を与えるような種々の波が立つ.数学的モデルはこれら全然異なる種々の現象を理解するのに役立っている.
多くの波動現象は,手振り挨拶のような単振動により特徴づけられる.フットボールスタジアムの反対側から見た場合,人体で作り出されたこのような波動はスタジアムを回って伝わって来るように見える.部屋をよぎって音波が諸君の声を伝えるのと同じだ.他の波動現象は,しばしば非線形の相互作用が関与しもっと複雑である.
大幅な減衰なく長距離を伝播できる特別な波動 Solitary wave(孤立波)は,1844年に始めてScott Russellによって,海峡の表面上で観察された.この種の波動はしばしば大洋の真ん中での地震によって始まり,又人間の誤りによっても生起され易いもので,ジェット飛行機の速さで大洋を横切って伝わる.そして波動が硬い海岸にぶつかった時は惨禍をもたらす.地震の破壊的影響と向かい合わねばならない日本人によって津波と名付けられたこの種の波動は大きな波長と小さい振幅のために検知されないままに伝わっていく.
しかしながら海岸線近くの水深が浅い場合は,この波動は海岸地域を水浸しにする程巨大な波動に変わっていく.Solitary waveは,1895年Kortewegとde Vriesによって方程式を用いて解析出来るようになった.驚く事ではないが,この解析モデルは 数学モデルとして万能性を反映して光ファイバ−・ケ−ブルとか注水式反応炉のプラズマを含め他の媒体の波動に対しても当てはまる事が発見されている.この方程式の注目すべき特質は,純粋数学の分野に深く連結している事である.
最近まで その方程式の解法の存在有無に関する数学理論について,批判的な疑問が解かれないままであった.そしてこの方程式の解法には,もっとも強力な完成者の資源が精一杯投入された.しかしながら今や数学的進歩によって,解法は通常的になされ波動進展の正確な予測も可能となっている.当初の方程式を解くための数学技法は手間がかかり そして扱い難いものであった.しかし現在は数種の効果的な技法があって信頼性のある結果を得る事が出来る.
水の波動の数学理論は,環境の理解と保全に役立つのみならず,その洞察は工業発展に意義深い衝撃力を持っている.Solitary waveは今では良く理解されているが,その他の水の波動は環境に対して尚未知の影響を秘めており,活きた数学の研究課題として残されている.
0

mam1993

数学強調週間 ( MAW )――4月25日〜5月1日, 1993

 「 Mathematics and Manufacturing / 数学と製造業 」

今日 世界経済の中で,製造業製品は世界取引の60%,米国取引の75%を占めている.製造業は速いペ−スで増加して国際的競合関係にある.新製品は数ヶ月で陳腐化する.更に競争するために多くの製造プロセスは1〜2年で改造されねばならない.これらの圧力に直面する時米国の製造業は継続的に更なる生産性と競争力をもつ必要がある.この様な改良は主として数学とコンピュ−タ科学による計量的方法に基礎づけられた組織的アプロ−チからもたらされる.
数理科学は製造業に多くの貢献をして来た.その範囲は,非常に具体的な製品になる材料から,非常に抽象的な情報処理にわたる.例えば統計解析は製造プロセスやシステムから,デ−タ−を意味のある形に集約する.類型化(モデリング)は製造問題をアルゴリズム法で処理できる数量的関係や方程式に結びつける.数学的アルゴリズムは数値計算に適する形式に数量的関係や方程式を表現する.
数理科学は製造業に使われる材料に関して劇的な衝撃を与えて来た.数学的モデルは形状記憶合金,高強度セラミックス,重合体システムや非線形光学材料を含む先進的材料の設計やプロセスを援助する.
製造プロセスは計量的解析,数学的類型化(モデリング),コンピュ−タ・シミュレーションにより改良され得る.この様なプロセスは,マイクロ・エレクトロニクス,金型,結晶成長,鋳物,接続,キュアリング,コ−ティングを含んでいる.これらプロセスのための数学的モデルは,微分,積分,離散方程式である.
 数学的な制御理論の進歩により,製造プロセス制御が改良された.応用は、化学プロセス製造や金属プロセス製造に見られる.
今日の製造業における多くの分野は,速い革新の目にあっている.知的製造業や固体モデリングは,他に現れる製造技術を支える基礎的な技術である.速い原型づくり,分子製造業,生物製造業は10年前には存在しなかった.これらは今後10年,製造業の主要な要素になると期待される.
数学とコンピュ−タ科学は,製造業における経営の意志を決定するツールの発達に,更に深く係わっていく.これらの計量的方法は経営の意志決定に対する伝統的,人間的な処理を補足すると共に,作業に基づく仕事の評価,コンピュ−タに基づく情報管理,柔軟な製造システム,柔軟さのための資本予算や総合的な製造法を含んでいる.
 コンピュ−タ容量の急速な増大と問題解決への計量的接近の増加は,製造業の世界を変貌させる.高価で時間のかかる伝統的な製造サイクルは,その製品が初めから正しく製造される可能性の高いより計量的な方法に置き換えられていく.
0